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Decreased production of
neuronal NOS-derived
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contributes to
endothelial dysfunction
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BACKGROUND AND PURPOSE
Reduced NO availability has been described as a key mechanism responsible for endothelial dysfunction in atherosclerosis. We
previously reported that neuronal NOS (nNOS)-derived H2O2 is an important endothelium-derived relaxant factor in the
mouse aorta. The role of H2O2 and nNOS in endothelial dysfunction in atherosclerosis remains undetermined. We
hypothesized that a decrease in nNOS-derived H2O2 contributes to the impaired vasodilatation in apolipoprotein E-deficient
mice (ApoE-/-).

EXPERIMENTAL APPROACH
Changes in isometric tension were recorded on a myograph; simultaneously, NO and H2O2 were measured using carbon
microsensors. Antisense oligodeoxynucleotides were used to knockdown eNOS and nNOS in vivo. Western blot and confocal
microscopy were used to analyse the expression and localization of NOS isoforms.

KEY RESULTS
Aortas from ApoE-/- mice showed impaired vasodilatation paralleled by decreased NO and H2O2 production. Inhibition of
nNOS with L-ArgNO2-L-Dbu, knockdown of nNOS and catalase, which decomposes H2O2 into oxygen and water, decreased
ACh-induced relaxation by half, produced a small diminution of NO production and abolished H2O2 in wild-type animals, but
had no effect in ApoE-/- mice. Confocal microscopy showed increased nNOS immunostaining in endothelial cells of ApoE-/-

mice. However, ACh stimulation of vessels resulted in less phosphorylation on Ser852 in ApoE-/- mice.

CONCLUSIONS AND IMPLICATIONS
Our data show that endothelial nNOS-derived H2O2 production is impaired and contributes to endothelial dysfunction in
ApoE-/- aorta. The present study provides a new mechanism for endothelial dysfunction in atherosclerosis and may represent a
novel target to elaborate the therapeutic strategy for vascular atherosclerosis.

Abbreviations
ApoE-/-, apolipoprotein E-deficient mice; AS-ODN, antisense oligodeoxynucleotide; EDRF, endothelium-derived relaxing
factor; eNOS, endothelial NOS; iNOS, inducible NOS; KD, knockdown; LDL, low density lipoprotein; MM-ODN,
mismatch oligodeoxynucleotide; nNOS, neuronal NOS
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Introduction
Atherosclerosis is the major cause of cardiovascular disease,
which still has the leading position in morbidity and mortal-
ity in the Western world. Endothelial dysfunction is consid-
ered an earlier marker for atherosclerosis, preceding
angiographic or ultrasonic evidence of atherosclerotic
plaques (Busse and Fleming, 1996; Luscher and Barton, 1997;
Ross, 1999; Cai and Harrison, 2000; Higashi et al., 2009a).

As the major regulator of vascular homeostasis, the endot-
helium not only modulates the tone of the underling vascular
smooth muscle but also inhibits several pro-atherogenic pro-
cesses, including smooth muscle cell proliferation and migra-
tion, platelet aggregation, oxidation of low-density
lipoproteins (LDL), monocyte and platelet adhesion and syn-
thesis of inflammatory cytokines, thus exhibiting important
anti-atherogenic effects (Vanhoutte, 1986; Kubes et al., 1991;
Freedman et al., 1999; Shimokawa, 1999; Leopold and Los-
calzo, 2009; Sima et al., 2009). Many of these effects are
largely mediated by NO.

NO is produced by NOS enzymes classified as endothelial
NOS (eNOS), neuronal NOS (nNOS) and inducible NOS
(iNOS) (Alderton et al., 2001). Although, eNOS is predomi-
nantly expressed in endothelial cells, and nNOS in neurons,
many tissues express more than one isoform. The vasculature
has the potential to express nNOS and eNOS (Rosenblum and
Murata, 1996; Boulanger et al., 1998; Toda and Okamura,
2003; Bachetti et al., 2004; Capettini et al., 2008). A physi-
ologically relevant role for nNOS has been attributed in the
modulation of myogenic tone (Fleming, 2003), systemic arte-
rial pressure (Kurihara et al., 1998) and cerebral blood flow
(Hagioka et al., 2005).

Recently, we have shown that nNOS is constitutively
expressed in the endothelium of the mouse aorta and, besides
NO, also produces hydrogen peroxide (H2O2) (Capettini et al.,
2008; 2010). H2O2 has been considered an endothelium-
derived hyperpolarizing factor (EDHF) in mesenteric (Matoba
et al., 2000; 2002), coronary (Miura et al., 2003; Yada et al.,
2003) and cerebral arteries (Sobey et al., 1997; Iida and
Katusic, 2000). In the mouse aorta, nNOS-derived H2O2

equally contributes with eNOS-derived NO to endothelium-
dependent vascular relaxation (Capettini et al., 2010).

nNOS has been recently proposed as a new anti-
atherogenic factor (Tsutsui, 2004; Kuhlencordt et al., 2006;
Schodel et al., 2009) preventing neointima formation in
carotid artery ligation model (Morishita et al., 2002). An
increase in nNOS expression was found in conductance vessels
with atherosclerotic plaque in human and murine models
(Wilcox et al., 1997). In addition, gene deletion of nNOS in
apolipoprotein E-deficient mice (ApoE-/-) accelerates athero-
sclerotic plaque formation in the aortic root and descending
thoracic aorta (Kuhlencordt et al., 2006; Schodel et al., 2009).

Murine models of atherosclerosis have impaired
endothelium-dependent relaxation (Busse and Fleming,
1996; Bouloumie et al., 1997; Luscher and Barton, 1997;
Deckert et al., 1999; Rabelo et al., 2003; Sima et al., 2009).
Chemical inactivation and reduced biosynthesis of NO have
been described as key mechanisms responsible for endothe-
lial dysfunction in aortas from atherosclerotic animals (Bou-
loumie et al., 1997; Laursen et al., 2001; Higashi et al., 2009b).
The role of H2O2 and nNOS to endothelial dysfunction in

atherosclerosis remains so far unknown. The aim of this study
was to investigate the contribution of nNOS-derived H2O2 to
the impaired endothelium-dependent relaxation in a murine
model of atherosclerosis. We hypothesize that an impairment
of the nNOS/H2O2 axis might contribute to endothelium
dysfunction in ApoE-/- mice.

Methods

Animals
All animal care and experimental procedures complied with
guidelines for the humane use of laboratory animals and were
approved by the animal ethics committee of the Federal Uni-
versity of Minas Gerais (protocol # 155/10). We used 12
week-old male homozygous ApoE-/- (29.7 � 0.4 g; n = 22)
mice and age-matched wild-type C57BL/6J (28.0 � 2.6 g; n =
25) mice. ApoE-/- mice were originally obtained from Jackson
Laboratories (Bar Harbor, ME, USA) and breed in animal
facilities of Federal University of Minas Gerais. C57BL/6J mice
were obtained from CEBIO/ICB (UFMG, Brazil). All animals
were fed a non-atherogenic diet. For metabolic characteriza-
tion of the animals and morphological and histological char-
acterization of the aorta, see online supporting information
and Figure S1.

Simultaneous measurements of NO, H2O2 and
vascular function
Simultaneous measurements of vasodilatation, NO and H2O2

production, induced by ACh were performed as previously
described (Capettini et al., 2010). In brief, rings from the
thoracic aorta were obtained, mounted in organ bath system,
washed in Krebs–Henseleit solution (in mmol·L-1: 110.8
NaCl, 5.9 KCl, 25.0 NaHCO3, 1.07 MgSO4, 2.49 CaCl2, 2.33
NaH2PO4 and 11.51 glucose, pH 7.4) and stabilized for
60 min. Concentration–response curves to ACh were con-
structed in vessels precontracted to the same tension level
(approximately 2.5 mN.mm) with submaximal concentra-
tions of phenylephrine (0.03–0.1 mmol·L-1). Measurements of
isometric tension were recorded by a force transducer (World
Precision Instruments, Inc., Sarasota, FL, USA) and were fed to
an amplifier-recorder (TBM-4 model; World Precision Instru-
ments, Inc.) and to a personal computer equipped with an
analogue-to-digital converter board (AD16JR; World Precision
Instruments Inc.). Changes in isometric tension were analy-
sed using WinDaq Data Acquisition software (Dataq® Instru-
ments, Akron, OH, USA). Carbon microsensors with a NO
and H2O2 permeable membrane (ISO-NOPF100 and ISO-
HPO100, respectively; World Precision Instruments Inc.) were
placed next to the lumen of vessels before ACh (0.001–
300 mmol·L-1) stimulus and currents (nA) were measured. NO
and H2O2 concentrations were determined by calibrations
curves of known concentrations of S-nitroso-n-
acetylpeniciline (SNAP, 0.2 to 500 nmol·L-1; World Precision
Instruments, Inc.) or H2O2 (0.001 to 10 mmol·L-1; Merck,
Darmstadt, Germany) freshly prepared.

Antisense oligonucleotides
Antisense oligodeoxynucleotides (AS-ODN) were used to
knockdown in vivo eNOS (eNOS-KD) and nNOS (nNOS-KD)
in wild-type and ApoE-/- mice (Capettini et al., 2008; 2010).
The 19-base phosphorothioated AS-ODN were constructed
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based on the mouse sequence. We used the following specific
sequences: 5′-CTCTTCAAGTTGCCCATGT-3′ for eNOS and
5′-AACGTGTGCTCTTCCATGG-3′ for nNOS (GenBank acces-
sion numbers NM 008713 and NM 008712) purchased from
Eurogentech North America Inc. (San Diego, CA, USA). The
phosphorothioated mismatch ODN (MM-ODN) sequence
with the base composition, 5′-GTCTTGAACTTCCCGATCT-3′,
was used as control ODN.

In vivo treatment with AS-ODN to nNOS
and eNOS
The mice received 2 nmol AS-ODN or MM-ODN i.v., 24 and
48 h before the experiments (Capettini et al., 2008; 2010).
The AS-ODN and MM-ODN were dissolved in a total volume
of 200 mL saline and injected with a 26-gauge needle in the
penile vein. The efficiency of the AS-ODN to block expression
of nNOS and eNOS was evaluated by Western blot analysis
and by functional assay of ACh-induced vasorelaxation.

Western blot analysis
Western blot was performed as previously described with some
modifications (Capettini et al., 2008). Aortic rings were dis-
sected and stabilized in Krebs–Henseleit solution for 15 min.
ACh (100 mmol·L-1) was then applied, and the aortas were
collected 8 min after and immediately frozen at -80°C. Non-
stimulated aortas were used for basal condition assays. The
frozen aortas were homogenized in lyses buffer (in mmol·L-1):
150 NaCl, 50 Tris–HCl, 5 EDTA.2Na, and 1 MgCl2 containing
1% Triton X-100 and 0.5% SDS plus a cocktail of protease
inhibitors (SigmaFAST®, Sigma, St. Louis, MO, USA) and phos-
phatase inhibitors (20 mmol·L-1 NaF; 0.1 mmol·L-1 Na3VO4);
50 mg of protein were denatured and separated in denaturing
SDS/7.5% polyacrylamide gel. Proteins were transferred onto a
polyvinylidene fluoride membrane (Immobilon P; Millipore,
MA, USA). Blots were blocked at room temperature with 2.5%
non-fat dry milk in PBS plus 0.1% Tween 20 before incubation
with rabbit polyclonal anti-nNOS (1:1000), mouse mono-
clonal anti-nNOS Ser852 (1:1000), rabbit polyclonal anti-
eNOS (1:1000), goat polyclonal anti-eNOS Ser1177 (1:1000),
goat polyclonal anti-eNOS Thr495 (1:1000) or rabbit poly-
clonal anti-b-actin (1:3000), at room temperature. Immunore-
active bands were detected using the Immobilon Western
Chemiluminescent HRP Substrate (Millipore, Billerica, MA,
USA). Rabbit polyclonal anti-eNOS was purchased from Sigma.
The other antibodies were purchased from Santa Cruz Biotech-
nology (Santa Cruz, CA, USA).

Confocal microscopy
Thirty percent sucrose (in PBS)-fixed cryosections (6 mm) of
the thoracic aorta from wild-type and ApoE-/- mice were rinsed
in wash buffer (3% BSA + 0.3% Triton X-100, in PBS). Following
appropriate blocking procedures (3% BSA in PBS; 30 min),
cross-reactivity of secondary antibodies with the alternating
primary antibodies was removed. Slides were incubated with
mouse monoclonal anti-GAPDH (1:100; Santa Cruz Biotech-
nology) and rabbit anti-nNOS (1:50; Santa Cruz Biotechnol-
ogy) or rabbit anti-eNOS (1:50; Sigma) overnight at 4°C
followed by incubation with goat anti-rabbit secondary anti-
body conjugated with Alexa Fluor 633 (1:500; Invitrogen,
Carlsbad, CA, USA) and goat anti-mouse secondary antibody

conjugated with Alexa Fluor 488 (1:500; Invitrogen) for 1 h.
The sections were examined with a Zeiss LSM 510 confocal
microscope (Thornwood, NY, USA) with excitation at 488/
633 nm and emission at 505–530/650 nm. The fluorescence
(arbitraries unities) intensity was measured using ImageJ®
software 1.42q (Wayne Rasband, NIH). Ten fields per slide of
endothelial and media layers were measured. The mean of
fluorescence from each slide was plotted and analysed using
GraphPad Prism 4 (Graphpad Software Inc., La Jolla, CA, USA).
Fluorescence intensity in ApoE-/- aorta was expressed as fold
increase compared with wild-type animals.

Statistical analysis
Results are expressed as mean � SEM. Two-way ANOVA with
Bonferroni’s multiple comparisons post-test was used to
compare concentration–response curves. Student’s t-test was
used in the other experiments. All statistical analyses were
considered significant when P < 0.05.

Materials
ACh, catalase, Nw-nitro-L-arginine methyl ester hydrochlo-
ride, L-ArgNO2-L-Dbu-NH2 2TFA and phenylephrine were pur-
chased from Sigma.

Results

Role of nNOS on ACh-induced vasodilatation,
and NO and H2O2 production in the ApoE-/-

mice aorta
Aortic rings from ApoE-/- mice showed a reduced vasodilata-
tion in response to ACh (Emax = 54.0 � 4.1%; P < 0.001),
compared with wild-type animals (Emax = 95.04 � 1.55%;
Figure 1A,B). The impaired vasodilator response in ApoE-/-

arteries was accompanied by a severe impairment in NO
(Figure 1A) and H2O2 production (Figure 1B). Non-selective
inhibition of NOS with L-NAME (300 mmol·L-1) abolished the
vasodilator response (Figure 2A) and NO production
(Figure 2B) in wild-type and ApoE-/- mice. H2O2 production
was almost completely abolished by L-NAME in wild-type
vessels. However, in ApoE-/- animals, the production of H2O2

was very low and not affected by L-NAME (Figure 2C). Inter-
estingly, selective inhibition of nNOS with 1 mmol·L-1 L-
ArgNO2-L-Dbu, a concentration that inhibits nNOS without
affecting eNOS (Huang et al., 1999), reduced ACh-induced
relaxation in wild-type but not in ApoE-/- aorta (Figure 2D),
suggesting a reduction in nNOS function and or expression in
ApoE-/- vessels. In wild-type animals, nNOS inhibition mod-
estly decreased NO (Figure 2E) but abolished H2O2 production
(Figure 2F). In ApoE-/- animals, NO and H2O2 production were
not affected by selective nNOS inhibition. Catalase
(2400 U·mL-1), which specifically decomposes H2O2 into
oxygen and water, reduced vasodilatation in wild-type
animals in the same proportion as that obtained with nNOS
inhibition. However, catalase had no effect in ApoE-/- aortas
(Figure S2). Vasorelaxation in response to H2O2 was not dif-
ferent between the strains (Figure S3).

Expression and localization of eNOS
and nNOS
Western blot analysis showed that expression of eNOS and
nNOS were increased in the aortas from ApoE-/- mice
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(Figure 3A,D). Confocal experiments to immunolocalize
eNOS and nNOS showed that in the wild-type animals, both
enzymes were present in the endothelial cells but were absent
in the media layer (Figures 4A and 5A). In ApoE-/- arteries,
eNOS (Figure 4C) and nNOS (Figure 5C) immunostaining
were increased in the endothelium as compared with wild-
type animals. Moreover, in ApoE-/- vessels, both enzymes
were also shown to be present in the smooth muscle layer of
the aorta (Figures 4A,B and 5A,B).

Determination of eNOS and nNOS
phosphorylation by Western blot
We analysed the phosphorylation state on serine (Ser) and
threonine (Thr) sites of eNOS and nNOS by Western blot. In
wild-type animals, ACh produced an increase in phosphory-
lation on Ser1177, the activation site of eNOS (Figure 3B);
conversely, the phosphorylation state of the inactivation site
of the enzyme on Thr495 was decreased (Figure 3C). In

Figure 1
Simultaneous measurements of vasodilatation (A,B), and NO (A) and H2O2 (B) production stimulated by ACh in the aortas of wild-type and ApoE-/-

mice . Continuous lines represent vasodilatation (left axis); dotted lines: NO (A) and H2O2 (B) measurements (right axis). The data are shown as
mean � SEM of at least five experiments. ***P < 0.001.

Figure 2
(A–C) Effect of L-NAME (300 mmol·L-1) on ACh-induced vasodilatation (A), NO (B) and H2O2 (C) production in the aortas of wild-type and ApoE-/-

mice. (D–F) Selective pharmacological inhibition of nNOS with L-ArgNO2-L-Dbu (1 mmol·L-1) reduced vasodilatation in wild-type but not in ApoE-/-

mice (D). In wild-type mice, L-ArgNO2-L-Dbu produced a small reduction in NO production (E) and abolished H2O2 (F). NO (E) and H2O2 (F) were
not modified by L-ArgNO2-L-Dbu in ApoE-/- mice. The data represent mean � SEM of at least five experiments. ***P < 0.001.
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ApoE-/- mice, the increase in phosphorylation on eNOS-
Ser1177 and dephosphorylation on eNOS-Thr495 induced
by ACh was smaller compared with wild-type vessels
(Figure 3B,C). Note that in basal conditions, ApoE-/- aortas
also showed a less significant phosphorylation level on eNOS-
Ser1177 and a higher level on eNOS-Thr495, compared with
wild-type animals.

The inactivation site for nNOS on Ser852 showed higher
phosphorylation levels on aortas from ApoE-/- mouse com-
pared with control animals in the basal conditions. After
stimulation with ACh, the phosphorylation level on the inac-
tivation site of the enzyme was decreased in wild-type aorta
but unchanged in ApoE-/- vessels (Figure 3E).

Vasodilator response, NO and H2O2

production in eNOS and nNOS
knockdown animals
The individual contribution of eNOS and nNOS to the vas-
cular responses, and NO and H2O2 production in ApoE-/-

mice, was evaluated by the use of in vivo AS-ODN knockdown
of eNOS and nNOS expression. Wild-type eNOS-KD mice
showed a reduced ACh-induced vasodilatation (Figure 6A)
that was accompanied by a strong decrease in NO production

(Figure 6B), without changes in H2O2 (Figure 6C). ACh-
induced relaxation and NO production were attenuated in
ApoE-/- eNOS-KD mice (Figure 6D,E). H2O2 production was
already impaired in ApoE-/- aortas and was not modified
in eNOS-KD animals (Figure 6F). Aortas from wild-type
nNOS-KD mice showed reduced vascular responses to ACh
(Figure 7A) in the same proportion as those seen with in vitro
pharmacological inhibition of nNOS and with catalase,
accompanied by a small reduction in NO production
(Figure 7B). However, H2O2 synthesis was strongly decreased
in these animals (Figure 7C). In aortas from ApoE-/- animals,
nNOS knockdown did not change the relaxant response to
ACh (Figure 7D), or the production of NO and H2O2

(Figure 7E,F). The ability of AS-ODN treatment to reduce
eNOS and nNOS expression was confirmed by Western blot
analysis as shown in Figure S4.

Discussion and conclusions

The major finding of this work is that the function of endot-
helial nNOS in ApoE-/- mouse aorta is decreased, leading to a
deficiency in H2O2 production and this contributes to the
endothelial dysfunction in ApoE-/- mouse.

Figure 3
eNOS (A) and nNOS (B) expression in aortas from wild-type and ApoE-/- mice. ACh-induced changes in the phosphorylation of eNOS-Ser1177
(B), eNOS-Thr495 (C) and nNOS-Ser852 (E). (F) Positive control for nNOS in brain. The vessels were stimulated with 100 mmol·L-1 ACh. The
histograms represent mean � SEM of four experiments. ***P < 0.001; **P < 0.01. Images are representative blots from four separate experiments.
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It is well known that in the cardiovascular system, eNOS-
derived NO plays an important role in the regulation of
vascular tone (Garland et al., 1995; Urakami-Harasawa et al.,
1997). However, there is increasing evidence attributing a
physiologically relevant role for nNOS in the control of
vascular homeostasis. The expression of nNOS in vascular

smooth muscle and endothelial cells has been commonly
associated with the control of brain blood flow (Wei et al.,
1999; Atochin et al., 2003; Hagioka et al., 2005; Kitaura et al.,
2007). In addition, in eNOS-/- mice, nNOS plays a major role
in the control of the coronary circulation (Huang et al., 2002;
Talukder et al., 2004; Chlopicki et al., 2005). Recently, we

Figure 4
Immunofluorescence detection of eNOS in aortic rings from wild-type (A, higher panel), ApoE-/- (A, middle panel) and eNOS-KD (A, lower panel)
mice. Immunostaining for eNOS was present in endothelial cells (arrows) in wild-type and increased in ApoE-/- vessels. Note the strong decrease
in eNOS immunostaining in eNOS KD (knockdown) animals. (B,C) The graphical representation of the relative eNOS fluorescence in the arterial
wall (B) and in endothelial cells (C) from wild-type, ApoE-/- and eNOS-KD arteries. GAPDH was used for control loading purposes. Images are
representative of five animals for each group. ***P < 0.001 compared with wild-type vessels.
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have shown that nNOS is constitutively expressed in the
endothelium of mouse aorta and contributes to the
endothelium-derived vasodilatation induced by ACh (Capet-
tini et al., 2008). These findings are consistent with the
reduced vasodilatation found in the aorta from nNOS-/- mice
(Nangle et al., 2004). Interestingly, we have shown that
besides NO, nNOS also produces H2O2 in physiological con-

ditions. Using pharmacological inhibitors and antisense
nNOS knockdown, and simultaneous measurement of NO,
H2O2 and vascular function, we demonstrated that nNOS-
derived H2O2 is a major endothelium-dependent relaxing
factor in the mouse aorta and importantly contributes to
endothelial-dependent vasodilatation in the mouse aorta
(Rabelo et al., 2003; Capettini et al., 2008; 2010).

Figure 5
Immunofluorescence detection of nNOS in aortic rings from wild-type (A, higher panel), ApoE-/- (A, middle panel) and nNOS-KD (A, lower panel)
mice. Immunostaining for nNOS was increased in endothelial cells (arrows) from ApoE-/- compared with wild-type vessels. Staining in nNOS-KD
(knockdown) animals was strongly diminished. (B,C) Graphical representation of the relative nNOS fluorescence in the arterial wall (B) and in
endothelial cells (C) from wild-type, ApoE-/- and nNOS-KD arteries. GAPDH was used for control loading purposes. Images are representative of
five animals for each group. ***P < 0.001 compared with wild-type vessels.
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It is well-established that endothelium-dependent vasodi-
latation is attenuated by hyperlipidaemia and atherosclerosis
in animals (Busse and Fleming, 1996; Nangle et al., 2003;
Rabelo et al., 2003) and human (Higashi et al., 2009a; Toma
et al., 2009). Endothelial dysfunction in atherosclerosis has
been commonly associated with a reduction in eNOS-derived
NO bioavailability; the involvement of nNOS and H2O2 in
endothelial dysfunction in atherosclerosis had not been clari-
fied. In this work, we provide consistent evidence that an
impairment in nNOS-derived H2O2 also contributes to endot-
helial dysfunction in the aorta from ApoE-/- mouse. In line
with this proposal, selective pharmacological inhibition of
nNOS reduced ACh-induced relaxation in control but not in
ApoE-/- mouse. These results were further corroborated by
specific antisense nNOS knockdown that showed similar
results. These data point to a decreased function and/or
expression of nNOS in ApoE-/- animals. However, the level of
nNOS protein was increased in ApoE-/- mouse aortas, as
assessed by Western blot analysis. Increased expression of
nNOS in the media layer from ApoE-/- mice aortas has been
reported previously (Schodel et al., 2009).

Our confocal data showed the presence of nNOS immu-
nostaining in the endothelial cell layer in control animals,
consistent with previous reports using different assays
(Loesch and Burnstock, 1998; Capettini et al., 2008). Inter-
estingly, we found that nNOS immunoreactivity was
increased in the smooth muscle cell layer as well as in the
endothelial cells from ApoE-/- mice aorta. Nonetheless, an
important finding from the present work was the difference

in the phosphorylation state of nNOS-Ser852, between the
strains. In wild-type aortas ACh produced a decrease in
phosphorylation of the inactivation site of the enzyme,
while in ApoE-/- vessels nNOS-Ser852 remained unchanged
by ACh stimulation. Together, these data indicate a
decreased functioning of endothelial nNOS and suggest a
role for this enzyme in the impaired vasorelaxation in the
aorta from ApoE-/- mouse.

Oxidative stress has been implicated in impaired
endothelium-dependent relaxations in atherosclerosis. An
increased level of reactive oxygen species (ROS) in the vessel
wall leads to modifications in calcium handling, expression
of voltage-dependent L-type Ca2+ channels, reduction in tet-
rahydrobiopterin availability and depletion of L-arginine in
endothelial cells (Laursen et al., 2001; Katusic and d’Uscio,
2004; Fransen et al., 2008; Erdely et al., 2010; Fu et al., 2010).
Therefore, we speculated that oxidative stress may well con-
tribute to the reduced functionality of nNOS leading to
impaired H2O2-induced relaxations.

The expression of eNOS was also reported to be increased
in aortas from ApoE-/- mice in despite of the decreased NO
production (Bouloumie et al., 1997; Loesch and Burnstock,
1998; Laursen et al., 2001; Kuhlencordt et al., 2004). The
decrease in NO production has been associated with changes
in the phosphorylation state of the eNOS (Fernández-
Hernando et al., 2007; Wang et al., 2010; Yamashiro et al.,
2010). Consistent with these data, we found an increased
expression of eNOS in aortas from ApoE-/- mice and this
was accompanied by a decreased vasodilator response, a

Figure 6
Effect of in vivo antisense oligodeoxynucleotide eNOS knockdown (eNOS KD) on vasodilatation (A,D), NO (B,E) and H2O2 (C,F) production in
aortas from wild-type (A–C) and ApoE-/- (D–F) mice. The data represent mean � SEM of at least five experiments. ***P < 0.001.
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diminution of eNOS function and a severe impairment in NO
production.

In summary, our data show that vasodilatation in wild-
type animals was decreased by half with catalase, nNOS
knockdown or pharmacological nNOS inhibition. Endothe-
lial dysfunction in ApoE-/- vessels was accompanied by abol-
ishment of H2O2 production and vasorelaxation was not
affected by catalase, nNOS knockdown or selective pharma-
cological nNOS inhibition. Conversely, eNOS knockdown
abolished the vasorelaxation in ApoE-/- mice and reduced
vasodilatation by half in wild-type animals. Vasodilatation in
response to exogenous H2O2 was not different between
strains. Together, these results show that (i) H2O2 production
is suppressed in aortas from ApoE-/- animals and might con-
tribute to the endothelial dysfunction in atherosclerosis; (ii)
although severely impaired, NO accounts for the residual
vasorelaxation in ApoE-/- mice.

In conclusion, our data show that endothelial nNOS
activity is decreased in ApoE-/- mouse aorta. The reduced
nNOS activity leads to an impairment in H2O2 produc-
tion that contributes to the attenuated endothelium-
dependent vasodilator response. These results indicate a
new mechanism for endothelial dysfunction showing a
critical role for nNOS-derived H2O2 in the impaired vasodi-
lator response in atherosclerosis. nNOS may represent a
novel target to elaborate the therapeutic strategy for vascu-
lar atherosclerosis.
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